“There’s Plenty of Room at the Bottom”
(Richard Feynman, Pasadena, 29 December 1959)

by Eric Drexler on 2009/12/29

Richard Feynman, 1959
Richard Feynman, 1959

“Feynman’s 1959 talk, entitled ‘There’s Plenty of Room at the Bottom’”, was delivered 50 years ago today, and the words I’ve quoted above are the first words in the first sentence of the first paper I wrote, almost 30 years ago, on what later became known as “nanotechnology”. Feynman read and discussed the paper with me before its publication, because it extended his ideas.

Richard Feynman’s work in quantum field theory forms part of the foundation of modern concepts of physics, at its deepest levels. “There’s Plenty of Room at the Bottom” was a comparatively casual effort — an after-dinner speech at a conference — yet in it he presented a bold and enduring vision of a technological journey leading toward the atomic scale and toward the ultimate boundaries set by physical law. The world has traveled far toward what Feynman saw, and has far still to go.

I’ll start here by saying more about the talk, then about the evolution of the concepts, and finally show how the talk and the concepts have been woven into the history of the rise of nanotechnology.

The road already traveled: Nanoscale miniaturization

Feynman proposed shrinking computing devices toward their physical limits, where “wires should be 10 or 100 atoms in diameter”. Samsung this month announced large-scale production of devices built with 30 nanometer technology, which is to say, with wires at Feynman’s 100-atom scale. When Feynman spoke, a single computer could fill a room.

The talk held much more than that: Feynman suggested that focused electron beams could write nanoscale features on a surface; this is now called “e-beam lithography”. He suggested that electron microscopes with less symmetric lenses could image atoms; this is the idea behind the new generation of aberration-corrected microscopes, and they do image atoms. He pointed to complex, active, nanoscale biological mechanisms as an inspiration for nanoscale technology; these have become the basis of what is called “biotechnology”, which has delivered what are in some ways the most advanced nanotechnologies developed to date.

The road ahead: Large-scale atomic precision

Beyond this, Feynman was the first to outline a world of technologies that would work and build at the ultimate, atomic scale. He viewed this world from a top-down perspective, as the ultimate frontier for miniaturization; I later described a bottom-up path to the same world, as the ultimate frontier for molecular assembly. The approach I suggested was rooted in the biological mechanisms that had inspired Feynman.

What had changed was the state of knowledge: Feynman saw an entry to the atomically precise world from the top down, by building smaller and smaller machines, and ultimately using these to build machines the smallest possible scale by “maneuvering things atom by atom”.

When I wrote, over 20 years later, machines had been found that were already at that scale, in biology — machines that already built structures with atomic precision, and that scientists were learning to program. I saw another entry to the world he had foreseen, a path from the bottom up that would harness molecular-scale machines to build new atomically precise components, and with them, atomically precise machines of increasing size, capability, and complexity.

I took the concepts much further of course, and in greater analytical depth. Feynman had given the famous talk, then (with an occasional revisit) turned to other concerns. I wrote a paper, a dissertation, and both a popular and a highly technical book, then turned to other things, and later got pulled back in again when I found that I had to explain the basics again [pdf].

A lot happened in that time.

The promise that launched the field of nanotechnology

There has been some controversy about the history of nanotechology, and a tendency to downplay, or even disparage, the idea that nanotechnology is deeply and legitimately linked to the idea of using nanoscale machines to build things by, as Feynman put it, “maneuvering things atom by atom”. I’d like to outline some of the history that shows the connections.

The initial excitement about nanotechnology was centered on large-scale atomically precise fabrication and the advanced technologies it could bring. As I discussed in a recent post, the term and this concept emerged together, in my 1986 book, and launched a wave of media coverage, scientific discussion, and general excitement. This wave merged with others, mixed with politics, and grew to support what became a multi-billion-dollar research initiative. The concept that created the excitement — identified with the idea of atom-by-atom control — was part of the package, all the way through.

Feynman’s vision of atomically precise fabrication was cited in a presidential address in January, 2000, at the inception of the program:

My budget supports a major new National Nanotechnology Initiative, worth $500 million. Caltech is no stranger to the idea of nanotechnology — the ability to manipulate matter at the atomic and molecular level. Over 40 years ago, Caltech’s own Richard Feynman asked, “What would happen if we could arrange the atoms one by one the way we want them?”

While Congress deliberated that summer, the soon-to-be-funded NNI published a document (“National Nanotechnology Initiative: The Initiative and Its Implementation Plan” [pdf]) describing what it aimed to do. The language in this document was very compatible with what Congress, the President, and the public had been promised: building things at the smallest possible scale by “maneuvering things atom by atom”. Here’s the beginning of the second section:

2. Definition of Nanotechnology

The essence of nanotechnology is the ability to work at the molecular level, atom by atom, to create large structures with fundamentally new molecular organization. [...] [but see later changes]

Section 3 reinforced this message by citing “There’s Plenty of Room at the Bottom” and Feynman’s “vision of exciting new discoveries if one could fabricate materials and devices at the atomic/molecular scale”

At that time, Richard Smalley was the most prominent scientific spokesman for the movement to create the NNI, and in congressional testimony that summer, he stated:

We are about to be able to build things that work on the smallest possible length scales, atom by atom, with the ultimate level of finesse. These little nano things and the technology that assembles and manipulates them, what we call nanotechnology, will, I am certain, revolutionize our industries and our lives….

[The] technology of our 20th century is fantastic, but it pales when compared to what will be possible when we learn to build things at the ultimate level of finesse, one atom at a time.

There is a clear connection between this and the concepts that Feynman and I had proposed. I an open letter to me, Smalley later wrote:

I was fascinated by your book “Engines of Creation” when I first read it in 1991. Reading it was the trigger event that started my own journey in nanotechnology

Readers exposed to science politics in the 2000–2005 time frame may find the above surprising, but I think it helps validates the strong claims that have been made for a direct conceptual and historical link between Feynman’s concepts and the growth and funding — though only small part of the scientific content — of the modern field of nanotechnology.

Looking forward

Understanding this background of ideas, and the institutional dynamics that have gone with them, can help us to understand where we are today — and what is more important, how to move forward to realize the promise that launched the field of nanotechnology.

The objectives that launched the field are powerful, yet in many ways quite different from the vast mythology that has grown up around them. I am persuaded that accomplishing these objectives, in their realistic and demythologized form, will provide solutions to problems on the largest scale, including climate change. Greater clarity and more effective pursuit of these objectives will reinvigorate the diverse field that nanotechnology has become, drawing ideas, enthusiasm, and support from new sources.

[updated 30 Dec]

See also:

Studies of advanced atomically precise fabrication:

J. Scott December 30, 2009 at 5:08 pm UTC

Dr. Drexler, Recently I saw a fascinating lecture by Evelyn Hu on nanotechnology in optics. BTW, received the Saunders MacLane book a couple weeks ago, and you were right. Thanks for the recommendation and all the best in 2010!

sin_non chen December 31, 2009 at 12:53 am UTC

hi,i come from taiwan.i reaserch use ultraviot light
to reduced AgNO3 and in situ polymer crosslinking,and make organic- inorganic nanocomposite, now i have troubles , how to increase
nanosilver quanity, i add AgNO3 solid to ethanol and commercial polymer than photolysis ,can author give me some ideas? and who is make this related experiments,thanks

Eric Drexler December 31, 2009 at 1:02 am UTC

@ J. Scott — Thanks. It‘s particularly interesting that Evelyn Hu’s group is working on bio-assembled materials — and in collaboration with Angela Belcher, too. As I mentioned in a post on (natural) molecular machine assembly, this is an area that could contribute greatly to developments in framework-directed, highly ordered bio/inorganic composite nanosystems.

J. Scott January 1, 2010 at 10:39 pm UTC

Hu’s work is interesting on several levels—thanks for the additional information.
On another note, I discovered that I have a copy of Kline’s Math for Non-mathematician—between this resource that I forgot I had, and MacLane, 2010 may be the year the math muscle gets a regular workout.

Patrick January 2, 2010 at 4:51 pm UTC

I find these musings on nanotech’s long and diverse history just fascinating. While what happened in the 2000-2005 time frame is pretty straightforward to understand in terms of science politics, I’m curious to hear more about the “middle ground” – between the first Bay Area conferences on nanotech to the Clinton speech in Jan. 2000.

sheila house April 5, 2013 at 11:13 am UTC

I’m looking audio recordings and / or video recordings of Dr. Feynman talking about nanotechnology. Can anyone point in a direction?

Thanks in advance

`Sheila House

sheila April 5, 2013 at 11:20 am UTC

I guess I should also say here in this place that is a wealth of information that I’m also looking for any sound bites (with video would be the best) of people speaking about nanotech in relation to the start of the science and industry. Thanks so much.

~ Sheila House

ramandeepladda May 8, 2013 at 11:25 am UTC

sir,i want to ask you what can i do at my college level in terms of nanotechnology. can you please suggest any interesting project that i can do at this level.

ramandeepladda May 8, 2013 at 11:29 am UTC

sir , i want to ask you that what can i do at my college level in terms of nanotechnology.can you please suggest me any project related to nanotechnology.

{ 11 trackbacks }

Previous post:

Next post: